MinerU: An Open-Source Solution for Precise Document Content Extraction 2024-09-30 MSI-Agent: Incorporating Multi-Scale Insight into Embodied Agents for Superior Planning and Decision-Making 2024-09-30 HDFlow: Enhancing LLM Complex Problem-Solving with Hybrid Thinking and Dynamic Workflows 2024-09-30 A Survey on the Honesty of Large Language Models 2024-09-30 LML: Language Model Learning a Dataset for Data-Augmented Prediction 2024-09-30 MaskLLM: Learnable Semi-Structured Sparsity for Large Language Models 2024-09-27 LLaVA-3D: A Simple yet Effective Pathway to Empowering LMMs with 3D-awareness 2024-09-27 EMOVA: Empowering Language Models to See, Hear and Speak with Vivid Emotions 2024-09-27 Lotus: Diffusion-based Visual Foundation Model for High-quality Dense Prediction 2024-09-27 Discovering the Gems in Early Layers: Accelerating Long-Context LLMs with 1000x Input Token Reduction 2024-09-27 Pixel-Space Post-Training of Latent Diffusion Models 2024-09-27 Reducing the Footprint of Multi-Vector Retrieval with Minimal Performance Impact via Token Pooling 2024-09-27 Instruction Following without Instruction Tuning 2024-09-27 Robot See Robot Do: Imitating Articulated Object Manipulation with Monocular 4D Reconstruction 2024-09-27 Disco4D: Disentangled 4D Human Generation and Animation from a Single Image 2024-09-27 The Imperative of Conversation Analysis in the Era of LLMs: A Survey of Tasks, Techniques, and Trends 2024-09-27 Enhancing Structured-Data Retrieval with GraphRAG: Soccer Data Case Study 2024-09-27 Molmo and PixMo: Open Weights and Open Data for State-of-the-Art Multimodal Models 2024-09-26 Programming Every Example: Lifting Pre-training Data Quality like Experts at Scale 2024-09-26 Boosting Healthcare LLMs Through Retrieved Context 2024-09-26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410